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DYNAMIC DEFORMATION OF A WEDGE MADE OF AN
INHOMOGENEOUS HARDENING MATERIAL

M. A. Zadoyan and N. B. Safaryan UDC 539.374

Consideration is given to compression and bending of a plane infinite wedge at whose tip a concentrated
force P(t) is applied varying with time by a special rule. The material is assumed to be incompressible, plas-
tically inhomogeneous, and it obeys an exponential hardening rule. In essence, this material may also relate
to a nonlinearly elastic, nonlinearly ductile body whose compressibility may ignored. A study is also made of
the effect of external forces with which points of the body complete vibratory and monotonic movements in time,
Concentrated forces are determined corresponding to the deformed state of the wedge being considered. Ques-
tions of unloading are not discussed, and therefore for the case of plastic bodies a study is also made of the
stages of movement which lead to loading.

The stressed state in plastically inhomogeneous bodies under dynamic effects has been studied in [1-3,
and others]. A similar analysis of dynamic problems for plastically inhomogeneous bodies is given in [4, 5].
A study of dynamic deformation questions for a plastically inhomogeneous incompressible body is of interest,
particularly from the point of view of studying the effect of inertial forces on the stressed—strained state of
the body.

Dynamic problems for incompressible ductile materials with axisymmetric and planar deformation have
been considered in [6, 7].

1. Equations for deformation theory of plasticity for an incompressible, inhomogeneous material with an
exponential hardening rule in the case of plane strain have in normal notation the following form:

differential equations of motion

ac, 4 9T,  0G,—0y %u
+ -5+ =p 5 |
ar r 49 r Ztv (1.1)
617,9 4 60'9 2 v .
o T m T e T P

relationships between stress and strain intensities

£ =(%-)3, K =K(r8), (1.2)

Gy = —i' l’/-(o'r —0g): + 4779, & = V(Sr — gg)* + 4'?361

[K(r, 0) is a known function characterizing a plastically inhomogeneous materiall;
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relationships between strain, displacement, and stress components

1
& =2 = 2 k(r, 8) 0} (0. —0),

1
eo =+ L2 = L k(r,0)0} (00— 0), 49

a {4 du
2Yre='5'1:._'—‘1:._+ 7 36 _.—k(r; e)UOTTG

k(r, 8) =K %r, 6), 0 =(1/2)(¢, + 0y) is the average stress]. Subsequently it is assumed that inhomogeneityis
governed by the rule

K(r, 8) = ka®), (1.4}
where k is a constant value; w(9) is a known function determined by experiment.
Displacement components satisfying the incompressibility condition are presented as

u = r A1 @) (h), v = M—r-Lp@)f(2) (1.5)

{p(8) and £(9) are arbitrary functions of their own arguments; A is a consfant parameter]. Proceeding from
relationship (1.3) for the stress component we have

h+2

o =op—dk(L 1) ° ¥ (0)o(®)%(0) /(1)
l+2 s (1 -6)
To=kr ° (¢ (0) —A(+2)p(B)]o®) 107",

1

1 (0) = {4 + 12972 (0) + [¥ ) — A A+ 2) p (@)Y *

By substltutmg expressions for displacements (1.5) and stresses (1.6) in the first equation of (1.1}, we
obtain
_hr2
skr ° , .
00 = H(0) + 2 7P (08 @ — 10+ 2 v O 0 02 O + .

5 (2= )Y O 0@ 1O —F v OF @

{H(t) is an arbitrary function of the argument]. Expressions (1.5)-(1.7) will be solved by Egs. (1.1) if A =1, and
function (6) satisfies a normal second order differential equation

oW =0 vy = Asin (9 +9). (1.8)
V(v — 3%)* — 169"

Here v = -p%/k; p is a constant value; A and 6 are arbitrary constants. Function f(t) satisfies a second order
differential equation

faufis =0, (1.9)

whose solution with ¢ = 0 is presented in quadratures:

o 7
—g—ut = 4 ydx/ VC4/3 F z4/3, (1.10)

fq

where f, and ¢ are parameters characterizing dynamic deformation. A minus in the expression under the root
corresponds to nonlinear vibration of the body, and a plus to deformation monotonic with time. A curve for
relationship (1.10) with £, =0 is given in Fig. 1.

Equations for stresses and displacements take the form

o‘,:"L:(Q[Acos(G—{-é)— A :I—{—H(t),,

VW — 9t 1697 {1.11)
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1/3
~ 420 fo0s 0+ 8) + B (1), 7o = P2 [Asin (0 4 &) + vy,
=0y ©.0=19 )

Proceeding from the condition 0y =0 with 6 = +o, in relationships (1.11) we obtain A =0, H(t) =0. Equation
{1.8) is written as

oW . g
V(" —3p) L 1697 (1.12)

Differential Eq. (1.12) is reduced to a cubic equation relating to (" — 3zp)“1. By determining its actual
root we arrive at a differential equation

W — 3 = 4VF vy

= 1.13
;/ 6 V3 ve® -+ Vv + 108057 + 13/ 61/3v¥0® — Vv + 1080y’ ( )

2. In the case of compressing a wedge by a concentrated force applied to its tip it is necessary to inte-
grate differential Eq. (1.13) with boundary conditions

P=0 for §=0,9 =0 for 0 = a. (2.1)
For numerical solution it is more convenient to reduce (1.13) to a set of two first order equations

413 Vs
]3/sm3+ V‘s2m6+ve¢6+ 13/“03_ ]/szms+vs1pe (2.2)

V=s6V3 s =18Y3y+

with boundary conditions (2.1).

In order to establish the relationship between P(t) and £(t) we consider equilibrium for a sector notionally
separated from the wedge with arbitrary radius r

[»2
P ()2 (6, cos8 — 7,55in 8) rdd = 0. (2.3)
0

By substituting (2.3) in an expression for the stress component, after some simplification we obtain

Pty = EIf'2),

where

J o= 2v6f1psin 0d6 - V[‘—g_![f/ sod 4 V $o® - VoS | f/ 03 Z V vy - szmﬁ] cos 040,

Finally, stress and displacement equations are presented as

2 Pt
0= — s [V et Vewr T v + Yot Vew Ty,
P (1)
Tre-v (t 1[% 6—0 (24)
__Po s _Poy
6 V3 K20° &' XIS

With P(t) = const there is static deformation. Then arbitrary parameter » =0. The solution of Eq. (1.13)
will be

(¢, and c, are arbitrary constants). From the condition y(0) =0 it follows that ¢, =0. Equations for the stress
and displacement components have the form
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G, = — 54@ et ko (6) ch'™® V38, 05 = 7,9 = 0,
V6 r

V3ech V50 - osh V30 (2.5)
= T 7-2 ) = 7-2 .

In order to determine unknown constant ¢, we consider static equilibrium for a notionally separated sec-
tor of the wedge with arbitrary radius r

@&
P—f—2_s g, c088.rdd = 0.
1]

By substituting here an expression for o, from {2.5), we have

[e2

2p® " 13 /T
J; =8\ o (0) ch!”® Y30 cos 6d0.
¢

VTN

Static compression of a homogeneous wedge by a concentrated force applied at the tip has been studied in
[8, 9] for the general case of gradual hardening. On the basis of numerical solution of boundary problem (2.1),
(2 2) onan ES-1022 computer by the adjustment method [10], curves have been plotted for relative stresses
13 =[Jr /P t)]o from Eq. (2.4) (with ¢ = 7/6, 7/2, v =60) for the case of inhomogeneity w(0) = exp{6% 2)
(Fig. 2).

The problem is reduced to a Cauchy problem if it is possible to obtain a sufficient number of boundary
conditions at one of the ends of the integration cut-off. It is assumed that it is possible to estimate those val-
ues of the functions sought which are not prescribed at the given end of the integration cut-off, when existing
information is sufficient for integrating the set of differential equations both in the direction of an increasing
argument and in the reverse direction. If the estimates used are correct, then the two solutions found in this
- way will coincide at internal points of the integration cut-off. Therefore, the problem consists of stagewise
improvement of the initial estimates for unknown boundary conditions until the solutions coincide.

Comparison of the results obtained with those for a homogeneous material indicate that inhomogeneity
markedly affects the stress-strained state. In fact, with an opening angle « = 7/6 consideration of inhomo-
geneity leads to an increase in relative normal and tangential stresses by 20 and 10%, and with o = #/2 it is a
factor of 3 and 50% respectively.

3. Now we consider the case when an infinite wedge is bent by a concentrated force P(t) applied to the
tip perpendicular to the axis.

Stress and displacement components in this antisymmetrical case are
8113 (1) v (6) 0 (6) ‘
T VIO @ + 15V @)

Trg = M‘P (6), 06 =0,

G = —

By @), v =L v 0), v= 2= otk
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where function (8) is determined from differential Eq. (1.13) with boundary conditions
".IJ,(G) — 0 for . e = O‘,; (3.1)
(@) = 0 for 0 = a,

and function f(t) is determined from quadrature (1.10).

In order to establish the relationship between P(t) and f£(t) we consider the equilibrium condition for a
sector with arbitrary radius r with a center at the tip notionally separated from the wedge

-]
P () 4+ 2 | (0, 5in @ 4 ¢, cos 0) rdd = 0.
[
By substituting here stress components using arrangement (2.2), we find that

P(t) = R (1), 7 = — 2v [ sin0dd +
(1]

-3

+ T/%OS [V s+ Ve £ v + /s — Vbt vyt | sin 0db.

Final stress and displacement equations are presented in the form (2.4). With P(t) = const there is static de~
formation. Then for unknown function y () we obtain ¢ (9) =c, coshv39.

Equations for stress and displacement components take the form
0 = — %- %o (8) sh™® V36, 0g = 1,0 =0,
4 2 r

'l/'?’;c2 sh V30 e ch’Y/36
— J U= 2

r r

In order to determine unknown constant c, we consider static equilibrium for a sector with arbitrary ra-
dius r notionally separated from the wedge

.-
P+2c,sin0.ra8 0.
[1]
Whence

o
2p® / e
=g da = sojm(e) sh'* V'3 0 5in 6.

On the basis of numerical solution of the boundary problem (2.2), (3.1) onan ES-1022 computer by the ad~-
justment method [L0] curves were plotted for relative stresses Gi*' =[Jr/ P(t)]oij from Eq. (2.4) (with o =
/6, 7/2, v =60) for the case of inhomogeneity w(6) = exp(4%/2) (Fig. 3).

Comparison of the results obtained with those for a homogeneous material indicate that inhomogeneity
leads to an increase in relative stresses. With ¢ = 7/6 relative normal stresses increase by 15%, and with
a = 7 /2 they increase by a factor of three.
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ANALYSIS AND DESIGN OF STRUCTURAL ELEMENTS
WITH OPTIMAL LONGEVITY

V. A, Zaev and A, F. Nikitenko UDC 539.376+539.019

Practically all investigations devoted to the optimal design of structural elements are executed under the
assumption of steady creep and do not take into account the circumstance that the cumulative damage process
accompanied by a continuous redistribution of the stress therein precedes fracture of the material. The solu-
tion of optimization problems with the traditional optimality criterion of the equal strength type resuits in un-
realizable designs in the majority of cases.

In this connection, a variational formulation of the problem of analyzing and designing structural elements
with optimal longevity 1is presented below. If is proposed here to use an optimality criterion that takes ac-
count of the total damage over the volume of the material during creep as the target functional. A method is
developed for solving this problem on the basis of nonlinear programming methods.

Let a body of volume V bounded by a surface S be loaded by surface loads that are constant in time. The
system of equations describing creep of the material and simultaneously taking account of the cumulative dam-
age therein has the form {1]

. (I)1 5 P12 3
T A W

o = O/ — o)m, @)

where & ;, &, are homogeneous functions in the stress of degree (n + 1) and (g + 1), 5ij= 0ij ~ Okké -/ 35 oy; are

stress tensor components, Sy = s; 15543 /2, pjj are creep strain tensor components, w is the damageabxhty param~
eter, and m, n, g are material charaotemstlcs, and the dot denotes differentiation with respect to the time,

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskei Fiziki, No. 3, pp. 165-171,
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